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Measurement of the top quark mass in the dilepton channel
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J.D. Degenhardt,64 F. Déliot,17 M. Demarteau,50 R. Demina,71 P. Demine,17 D. Denisov,50 S.P. Denisov,38

S. Desai,72 H.T. Diehl,50 M. Diesburg,50 M. Doidge,42 A. Dominguez,67 H. Dong,72 L.V. Dudko,37 L. Duflot,15

S.R. Dugad,28 D. Duggan,49 A. Duperrin,14 J. Dyer,65 A. Dyshkant,52 M. Eads,67 D. Edmunds,65 T. Edwards,44

J. Ellison,48 J. Elmsheuser,24 V.D. Elvira,50 S. Eno,61 P. Ermolov,37 H. Evans,54 A. Evdokimov,36

V.N. Evdokimov,38 S.N. Fatakia,62 L. Feligioni,62 A.V. Ferapontov,59 T. Ferbel,71 F. Fiedler,24 F. Filthaut,34

W. Fisher,50 H.E. Fisk,50 I. Fleck,22 M. Ford,44 M. Fortner,52 H. Fox,22 S. Fu,50 S. Fuess,50 T. Gadfort,82

C.F. Galea,34 E. Gallas,50 E. Galyaev,55 C. Garcia,71 A. Garcia-Bellido,82 J. Gardner,58 V. Gavrilov,36 A. Gay,18
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We present a measurement of the top quark mass in the dilepton channel based on approximately
370 pb−1 of data collected by the DØ experiment during Run II of the Fermilab Tevatron collider.
We employ two different methods to extract the top quark mass. We show that both methods yield
consistent results using ensemble tests of events generated with the DØ Monte Carlo simulation.
We combine the results from the two methods to obtain a top quark mass mt = 178.1 ± 8.2 GeV.
The statistical uncertainty is 6.7 GeV and the systematic uncertainty is 4.8 GeV.

PACS numbers: 14.65.Ha
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The top quark mass is an important parameter in stan-
dard model [1] predictions. For example, loops involving
top quarks provide the dominant radiative corrections to
the value of the W boson mass. Precise measurements of
the W boson and top quark masses provide a constraint
on the Higgs boson mass [2].

At the Tevatron, top and antitop quarks are predom-
inantly pair-produced. Top quarks decay to a W boson
and a b quark. If the W bosons from the top and the anti-
top quarks both decay leptonically (to eν or µν) the final
state consists of two charged leptons, missing transverse
momentum (/pT ) from the undetected neutrinos, and two
jets from the fragmentation of the b quarks. We call this
the dilepton channel. It has a relatively small branching
fraction (≈ 5%) but very low backgrounds. The mea-
surement of the top quark mass in the dilepton channel
is statistically limited. It provides an independent mea-
surement of the top quark mass that can be compared
with measurements in other tt decay channels, and a
consistency check on the tt hypothesis in the dilepton
channel.

The DØ detector is a multipurpose collider detec-
tor [3]. The central tracker employs silicon microstrips
close to the beam and concentric cylinders covered with
scintillating fibers in a 2 T axial magnetic field. The
liquid-argon/uranium calorimeter is divided into a cen-
tral section covering |η| ≤ 1.1 and two endcap calorime-
ters extending coverage to |η| ≤ 4.2 [4], where η =
− ln[tan(θ/2)] and θ is the polar angle with respect to
the proton beam direction. The muon spectrometer con-
sists of a layer of tracking detectors and scintillation trig-
ger counters between the calorimeter and 1.8 T toroidal
iron magnets, followed by two similar layers outside the
toroids.

The event selection was developed for measurements of
the cross section for tt-production in the dilepton chan-
nel. The analyses use about 370 pb−1 of data from pp
collisions at

√
s=1.96 TeV collected with the DØ detector

at the Fermilab Tevatron collider. All jets were corrected
using the standard DØ jet energy scale corrections.

We select events with two isolated leptons (e or µ) with
transverse momentum pT > 15 GeV and at least two jets
with pT > 20 GeV. We distinguish eµ, ee, and µµ events.
For eµ events we require HT > 122 GeV, where HT is
the scalar sum of the larger of the two lepton pT val-
ues and the pT values of the leading two jets. For ee
events we require sphericity [5] S > 0.15 and missing
transverse momentum /pT > 35–40 GeV, depending on
the dielectron invariant mass m(ee), and we reject events
with 80 < m(ee) < 100 GeV to reduce the background
from Z → ee decays. For µµ events we require incon-
sistency with the Z → µµ hypothesis based on the χ2

of a kinematic fit, ∆φ(/pT , µ) < 175◦, and /pT > 35 GeV.
We tighten the /pT requirement if the leading muon and
the /pT are approximately collinear in the transverse di-
rection.

For our mass measurements we use the following sam-
ples of events. The “b-tag” sample consists of events that

have at least one jet that contains a secondary vertex
tag with transverse decay length significance Λxy > 7 [6].
This sample has very low backgrounds. The “no-tag”
sample consists of events that have no such secondary
vertex tags. The 26 events in these two samples consist
of 20 eµ events, 5 ee, and 1 µµ event. The “tight” sample
does not use the b-tagging information. It contains all ee
and µµ events that are in either the b-tag or the no-tag
samples. For eµ events the tight sample requires more
restrictive HT , /pT , and electron selection cuts to reduce
backgrounds.

To increase the acceptance for dilepton decays, we also
analyze a sample of events that requires only one well-
identified lepton (e or µ) with pT > 15 GeV and an iso-
lated track with pT > 15 GeV instead of the second iden-
tified lepton. The events must also have at least two jets
with pT > 20 GeV, at least one jet with a secondary
vertex tag, and /pT > 15–35 GeV, depending on lepton
flavor and the invariant mass of the lepton+track system.
We call this the ℓ+track sample. Events with two well-
identified leptons are vetoed from this sample so that
there is no overlap between the ℓ+track sample and the
other dilepton samples. There are 9 e+track events and
6 µ+track events in this sample. The expected and ob-
served event yields for each of the data samples are listed
in Table I.

TABLE I: Expected and observed dilepton event yields for tt

production with mt = 175 GeV and the backgrounds from
WW and Z production based on Monte Carlo, and from
misidentified leptons (mis-id) based on collider data.

Sample tt WW Z Mis-id Total Data

ℓℓ no-tag 7.2 1.1 2.6 2.2 13.2+2.8

−2.1
12

ℓℓ b-tag 9.9 0.05 0.12 0.09 10.1 ± 0.9 14
ℓℓ tight 15.8 1.1 2.4 0.5 19.8 ± 0.6 21
ℓ+track 11.3 0.02 4.4 0.4 16.2 ± 1.1 15

Monte Carlo samples are generated for nineteen values
of the top quark mass between 120 and 230 GeV. The
simulation uses alpgen [7] with cteq5l parton distribu-
tion functions [10] as the event generator, pythia [8] for
fragmentation and decay, and geant [9] for the detector
simulation. The energy of Monte Carlo jets is increased
by 3.4% in addition to the nominal jet energy scale cor-
rections. This factor was determined by fitting top mass
and jet energy scale in lepton+jets events and brings the
invariant mass distribution of the two jets from the W
boson decay in lepton+jets MC events in agreement with
that observed in the data.

We use only the two jets with the highest pT in this
analysis. We assign these two jets to the b and b quarks
from the decay of the t and t quarks. If we assume a
value mt for the top quark mass, we can determine the
pairs of t and t momenta that are consistent with the ob-
served lepton and jet momenta and /pT . We call a pair of
top-antitop quark momenta that is consistent with the
observed event a solution. For each assignment of ob-
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served momenta to the final state particles and for each
hypothesized value of mt, there may be up to four solu-
tions. We assign a weight function w(mt) to each solu-
tion, as described below. We reject two events for which
no solution exists for any value of mt.

We consider each of the two possible assignments of
the two jets to the b and b quarks. We account for detec-
tor resolutions by repeating the weight calculation with
input values for the lepton and jet momenta that are
drawn from the detector resolution functions for objects
with the observed momenta. We refer to this procedure
as resolution sampling. For each event we obtain a weight

W (mt) = 1/N × ∑N

j=1

∑n

i=1 w(mt)ij by summing over
all n solutions and averaging over N resolution samples.
This weight characterizes the likelihood that the event is
produced in the decay of a tt pair as a function of mt.

The techniques we use are similar to those used by the
DØ Collaboration to measure the top quark mass in the
dilepton channel using Run I data [11]. The data are
analyzed using two different methods that differ in the
event samples that they are based on, in the calculation
of the event weight, and in the algorithm that compares
the weights for the observed events to Monte Carlo pre-
dictions to extract the top quark mass.

The matrix-element weighting technique (MWT) fol-
lows the ideas proposed by Dalitz and Goldstein [12] and
Kondo [13]. The solution weight is

w(mt) = f(x)f(x)p(E∗
ℓ |mt)p(E∗

ℓ
|mt),

where f(x) is the parton distribution function of the pro-
ton and x (x) is the momentum fraction carried by the
initial (anti)quark. The quantity p(E∗

ℓ |mt) is the prob-
ability that the lepton has energy E∗

ℓ in the top quark
rest frame for the hypothesized top quark mass mt.

For each event we use the value of the hypothesized
top quark mass mpeak at which W (mt) reaches its max-
imum as the estimator for the mass of the top quark.
We generate probability density functions of mpeak for
a range of top quark masses using Monte Carlo simula-
tions. We call these distributions templates. To compute
the contribution of backgrounds to the templates, we use
Z → ττ and WW events generated with the full DØ
Monte Carlo. Backgrounds arising from detector signals
that are misidentified as electrons or muons are estimated
from collider data samples.

We compare the distribution of mpeak for the observed
events to these templates using a binned maximum like-
lihood fit. The likelihood is calculated as

L(mt) =

nbin
∏

i=1

[

nssi(mt) + nbbi

ns + nb

]ni

,

where ni is the number of data events observed in bin i,
si(mt) is the normalized signal template contents for bin
i at top quark mass mt, bi is the normalized background
template contents for bin i. The product runs over all
nbin bins. The background template consists of events

from all background sources added in the expected rel-
ative proportions. The signal-to-background fraction is
fixed to ns/nb with the numbers of signal and background
events (ns, nb) taken from Table I.

To calibrate the performance of our method, we gener-
ate a large number of simulated experiments for several
input top quark mass values. We refer to each of these
experiments as an ensemble. Each ensemble consists of as
many events of each type as we have in our collider data
sample. A given event is taken from the signal and back-
ground samples with probabilities that correspond to the
fraction of events expected from each sample. We use a
quadratic function of mt to fit the − lnL points to thir-
teen mass points centered on the point with the smallest
value of − lnL. The distribution of measured top quark
mass values from the ensemble fits gives an estimate of
the parent distribution of our measurement. The ensem-
ble test results indicate that the measured mass tracks
the input mass with an offset of 1.9± 0.8 GeV, which we
correct for in the final result.

The MWT analysis uses the no-tag and b-tag sam-
ples of events. Separating out the very-low-background
b-tagged events improves the precision of the result. The
analysis is performed with separate templates for ee, eµ,
and µµ events and separate signal-to-background frac-
tions for events without a b-tag and ≥ 1 b-tags. The
maximum of the joint likelihood for all events, shown in
Fig. 1, corresponds to mt = 176.2 ± 9.2(stat) GeV after
the offset correction. Figure 2 shows the distribution of
mpeak from collider data compared to the sum of Monte
Carlo templates with mt = 180 GeV.
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FIG. 1: Joint likelihoods from the MWT analysis (closed
circles) and the νWT analysis (open circles). The minima
of the likelihood curves do not include the correction for the
offset in the response.
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FIG. 2: Distribution of mpeak from the MWT analysis
(circles) compared to the sum of Monte Carlo templates
for the no-tag and b-tag channels and all lepton flavors for
mt = 180 GeV (open histogram). The shaded histogram in-
dicates the background contribution.

The neutrino weighting technique (νWT) ignores the
measured /pT in reconstructing the event. Instead we as-
sume a representative range of values for the pseudora-
pidities of the two neutrinos and the solution weight

w(mt) =
1

Nη

Nη
∑

i=1

exp

[−(/pxi − /px)2

2σ2
x

]

exp

[−(/pyi
− /py)

2

2σ2
y

]

characterizes the consistency of the resulting solutions
with the observed /pT . The sum is over the Nη steps of
neutrino rapidity values, /pxi and /pyi

are the x and y com-
ponents of the sum of the neutrino momenta computed
for step i, and σx and σy are the measurement resolu-
tions for /px and /py. We then normalize the event weight
W (mt) over the range 80 < mt < 330 GeV and integrate
it over ten bins in mt. Every event is thus characterized

by a 9-component vector
−→
W = (W1, ..., W9) (the 10th bin

is fixed by the first nine and the normalization condition).
We compare the vectors from the collider data events to
sets of N Monte Carlo events generated with different
values of mt by computing the signal probability

fs(
−→
W |mt) =

1

N

N
∑

j=1

9
∏

i=1

exp[−(Wi − WMC
ij )2/2h2]

∫ 1

0
exp[−(W ′ − WMC

ij )2/2h2]dW ′
,

where
−→
WMC

j is the vector of weights from Monte Carlo
event j. The resolution parameter h is optimized using
Monte Carlo studies. We compute a similar probability

fb(
−→
W ) for backgrounds and combine them in the likeli-

hood

L(mt, nb, n) = G(nb − nb, σ)P (ns + nb, n)

×
n

∏

i=1

[

nsfs(
−→
W i|mt) + nbfb(

−→
W i)

ns + nb

]

,

which we optimize with respect to mt, the number of
signal events ns, and the number of background events
nb. G is a gaussian constraint on the difference between
nb and the expected number of background events nb,
and P is a Poisson constraint on ns + nb to the number
of events n observed in data.

The νWT analysis uses the tight sample and the
ℓ+track sample. The analysis is performed with separate
templates for ee, eµ, and µµ events in the tight sample
and the two lepton flavors in the ℓ+track sample. We fit
the − lnL points for values of mt within 20 GeV of the
point with the smallest value of − lnL with a quadratic
function of mt. The performance of the νWT algorithm is
checked using ensemble tests as described for the MWT
algorithm. The average measured values of mt track the
input values with an offset of 1.7±0.2 GeV. For the νWT
analysis, the maximum of the joint likelihood of all events
(Fig. 1) corresponds to mt = 179.5± 7.4(stat) GeV after
the offset correction.

We also use ensemble tests to study the size of system-
atic uncertainties (see Table II). For example we deter-
mine the effect of the uncertainty in the calibration of
the jet energy scale of 4.1% by generating ensemble tests
with the jet energy scale increased and decreased by one
standard deviation. We follow the method for combin-
ing correlated measurements from Ref. [14] in combining
the results from the MWT and νWT analyses. We de-
termine the statistical correlation between the two mea-
surements using ensemble tests. The correlation factor
between the two analyses is 0.35. The systematic un-
certainties from each source in Table II are taken to be
completely correlated between the two analyses. The re-
sults of the combination are also listed in Table II.

TABLE II: Summary of dilepton mass measurements.

MWT νWT Combined
Top quark mass 176.2 179.5 178.1 GeV
Statistical uncertainty 9.2 7.4 6.7 GeV
Systematic uncertainty 3.9 5.6 4.8 GeV
Jet energy scale 3.6 4.8 4.3 GeV
Parton distribution functions 0.9 0.7 0.8 GeV
Gluon radiation 0.8 2.0 1.5 GeV
Background 0.2 1.4 0.9 GeV
Heavy flavor content — 0.6 0.3 GeV
Monte Carlo statistics 0.8 1.0 0.9 GeV
Jet resolution — 0.6 0.3 GeV
Muon resolution — 0.4 0.2 GeV

Total uncertainty 10.0 9.3 8.2 GeV

In conclusion, we measure the top quark mass in the
dilepton channel. We obtain mt = 178.1 ± 6.7(stat) ±
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4.8(syst) GeV as our best estimate of the top quark mass.
This is in good agreement with the world average mt =
172.5 ± 2.3 GeV [15], based on Run I and Run II data
collected by the CDF and DØ Collaborations.
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